Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Biol. Res ; 55: 38-38, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1429903

ABSTRACT

BACKGROUND: Excitotoxicity-induced in vivo injury models are vital to reflect the pathophysiological features of acute spinal cord injury (SCI) in humans. The duration and concentration of chemical treatment controls the extent of neuronal cell damage. The extent of injury is explained in relation to locomotor and behavioural activity. Several SCI in vivo methods have been reported and studied extensively, particularly contusion, compression, and transection models. These models depict similar pathophysiology to that in humans but are extremely expensive (contusion) and require expertise (compression). Chemical excitotoxicity-induced SCI models are simple and easy while producing similar clinical manifestations. The kainic acid (KA) excitotoxicity model is a convenient, low-cost, and highly reproducible animal model of SCI in the laboratory. The basic impactor approximately cost between 10,000 and 20,000 USD, while the kainic acid only cost between 300 and 500 USD, which is quite cheap as compared to traditional SCI method. METHODS: In this study, 0.05 mM KA was administered at dose of 10 µL/100 g body weight, at a rate of 10 µL/min, to induce spinal injury by intra-spinal injection between the T12 and T13 thoracic vertebrae. In this protocol, detailed description of a dorsal laminectomy was explained to expose the spinal cord, following intra-spinal kainic acid administration at desired location. The dose, rate and technique to administer kainic acid were explained extensively to reflect a successful paraplegia and spinal cord injury in rats. The postoperative care and complication post injury of paraplegic laboratory animals were also explained, and necessary requirements to overcome these complications were also described to help researcher. RESULTS: This injury model produced impaired hind limb locomotor function with mild seizure. Hence this protocol will help researchers to induce spinal cord injury in laboratories at extremely low cost and also will help to determine the necessary supplies, methods for producing SCI in rats and treatments designed to mitigate post-injury impairment. CONCLUSIONS: Kainic acid intra-spinal injection at the concentration of 0.05 mM, and rate 10 µL/min, is an effective method create spinal injury in rats, however more potent concentrations of kainic acid need to be studied in order to create severe spinal injuries.


Subject(s)
Humans , Animals , Rats , Spinal Cord Injuries , Spinal Injuries/complications , Paraplegia/complications , Rats, Sprague-Dawley , Disease Models, Animal , Kainic Acid/therapeutic use
2.
Braz. j. med. biol. res ; 54(5): e10717, 2021. tab, graf
Article in English | LILACS | ID: biblio-1180740

ABSTRACT

Scorpion venom is a Chinese medicine for epilepsy treatment, but the underlying mechanism is not clear. Scorpion venom heat-resistant peptide (SVHRP), a peptide isolated from the venom of Buthus martensii Karsch, has an anti-epileptic effect by reducing seizure behavior according to a modified Racine scale. The present study aimed to investigate the molecular mechanism of SVHRP on temporal lobe epilepsy. The hippocampus and hippocampal neurons from kainic acid-induced epileptic rats were treated with SVHRP at different doses and duration. Quantitative RT-PCR and immunoblotting were used to detect the expression level of brain-derived neurotrophic factor (BDNF), neuropeptide Y (NPY), cAMP-response element binding protein (CREB), stromal interaction molecule (STIM), and calcium release-activated calcium channel protein 1 (ORAI1). In the hippocampal tissues and primary hippocampal neuron cultures, SVHRP treatment resulted in increased mRNA and protein levels of BDNF and NPY under the epileptic condition. The upregulation of BDNF and NPY expression was positively correlated with the dose level and treatment duration of SVHRP in hippocampal tissues from kainic acid-induced epileptic rats. On the other hand, no significant changes in the levels of CREB, STIM, or ORAI1 were observed. SVHRP may exhibit an anti-epileptic effect by upregulating the expression of BDNF and NPY in the epileptic hippocampus.


Subject(s)
Animals , Rats , Scorpion Venoms/toxicity , Epilepsy/chemically induced , Epilepsy/drug therapy , Peptides , Brain-Derived Neurotrophic Factor/metabolism , Hot Temperature , Hippocampus/metabolism , Kainic Acid/toxicity , Neurons
3.
Journal of Zhejiang University. Medical sciences ; (6): 303-309, 2019.
Article in Chinese | WPRIM | ID: wpr-775219

ABSTRACT

OBJECTIVE@#To determine the correlation of phosphorylated ribosomal S6 protein (P-S6) content in blood and brain tissue in mice and rats with seizure.@*METHODS@#Seizure models were induced by intraperitoric injection of kainic acid (KA) in C57BL/mice and SD rats. Flow cytometry was used to detect the content of P-S6 in blood; Western blot was used to detect the expression of P-S6 in brain tissues. The correlation between P-S6 expression in blood and in brain tissue was examine by Pearson analysis, and the correlation between P-S6 expression in blood and the severity of seizure was also observed.@*RESULTS@#Western blotting analysis showed that the expression of P-S6 was significantly increased in peripheral blood and brain tissue in mice 1 h after KA-induced seizure,and the expression levels increased to (1.49±0.45) times (<0.05) and (2.55±0.66) times ( <0.01) of the control group, respectively. Flow cytometry showed that the positive percentage and average fluorescence intensity of P-S6 in the blood of mice increased significantly 1 h after KA-induced seizures (<0.01), which was consistent with the expression of P-S6 in brain tissue (=0.8474, <0.01). Flow cytometry showed that the average fluorescence intensity of P-S6 in blood increased from 14.89±9.75 to 52.35±21.72 (<0.01) in rats with seizure, which was consistent with the change of P-S6 in brain tissue (=0.9385, <0.01). Rats with higher levels of seizure were of higher levels of P-S6 in peripheral blood.@*CONCLUSIONS@#Consistent correlation of P-S6 expression is demonstrated in peripheral blood and in brain tissue after KA-induced seizure, suggesting that the expression of P-S6 in blood can accurately reflect the changes of mTOR signaling pathway in brain tissue.


Subject(s)
Animals , Mice , Rats , Brain , Gene Expression Regulation , Kainic Acid , Mice, Inbred C57BL , Phosphorylation , Rats, Sprague-Dawley , Seizures , Blood
4.
Acta Academiae Medicinae Sinicae ; (6): 53-56, 2019.
Article in Chinese | WPRIM | ID: wpr-773999

ABSTRACT

Objective To investigate the role of OpenBCI module in the electroencephalographic (EEG) detection of epileptic discharge.Methods C57BL/6J mice aged 8-12 weeks were divided into two groups:the sham-operated group and kainic acid-induced epileptic group. Spontaneous seizures were monitored continuously for 3 weeks either by EEG or by OpenBCI.Results Up to 8 mice could be simultaneously monitored by OpenBCI. Meanwhile,the module accurately recorded the resting discharge,EEG spikes,and seizures.Conclusion Compared with the conventional brain function monitoring system,the OpenBCI module has lower cost and data occupancy and thus may be applied in clinical settings.


Subject(s)
Animals , Mice , Electroencephalography , Epilepsy , Kainic Acid , Mice, Inbred C57BL , Seizures
5.
Journal of Peking University(Health Sciences) ; (6): 197-205, 2019.
Article in Chinese | WPRIM | ID: wpr-941792

ABSTRACT

OBJECTIVE@#To investigate functions of proteins and signaling pathways involved in epileptogenesis during the chronic stage of temporal lobe epilepsy in mouse models.@*METHODS@#Kainic acid-induced temporal lobe epilepsy models were conducted, when reaching stage 4 using racine scale, the mice of experimental group were supposed to be successfully established. Pentobarbital sodium was injected to stop epileptic seizure in case of death. Twenty-eight days after the kainic acid injection, when the experimental group generally turned into chronic spontaneous seizures, mice hippocampal tissues were extracted from the control and the experimental groups respectively for phosphoproteomic. Enriched phosphorylated proteins were detected using mass spectrometry, only the proteins whose density was greater than 106 were analyzed by matching the Gene Ontology (GO) database, Kyoto Encyclopedia of Genes and Genomes (KEGG) database and STRING database to detect proteins involved in epileptogenesis in protein functions, signaling pathways and protein-protein interaction respectively. After that, literatures were reviewed about the key proteins.@*RESULTS@#(1) Total of 12 697 phosphorylation sites of enriched proteins were detected by mass spectrometry, and there were 159 sites whose phosphorylation levels were significantly different from the control (P<0.001). (2) GO database showed that 35.7% of the 159 sites were about "catalytic activity", 39.5% were about "binding" and 20.8% were about "cell communication", and the 159 proteins also participated in many biological processes, such as "primary metabolic process" "response to stimulus" "developmental process" "localization" and "phosphate-containing compound metabolic process". (3) KEGG database showed that the 159 protein sites mainly involved in 10 signaling pathways: glutamatergic synapse, Ras signaling pathway, African trypanosomiasis, Cocaine addiction, Circadian entrainment, Amyotrophic lateral sclerosis (ALS), Long-term potentiation, Endocytosis, Gap junction, Nicotine addiction. (4) STRING database showed that the protein-protein interaction network formed by the 159 proteins was focused on Grin1/Dlg3, Arhgef 2/Arhgap33/Tiam1 and Sptnb1/3/4/Add3/Ank2 protein group respectively. (5) Phosphorylation levels of Grin1, Arhgef 2, Arhgap33, Tiam1, Sptbn1/2/4 and Ank2 in experimental group were significantly higher than in the control (P<0.001).@*CONCLUSION@#Phosphoproteomic illustrated integral distribution of phosphorylated proteins at the chronic stage of temporal lobe epilepsy in the mouse model. Literatures showed that most key proteins were closely related to epileptogenesis, suggesting that some proteins or signaling pathways may play a role in epileptogenesis, such as dopamine and Kir3.1.


Subject(s)
Animals , Mice , Disease Models, Animal , Epilepsy, Temporal Lobe , Hippocampus , Kainic Acid , Seizures
6.
Journal of Zhejiang University. Medical sciences ; (6): 450-456, 2018.
Article in Chinese | WPRIM | ID: wpr-775294

ABSTRACT

OBJECTIVE@#To investigate the effects of Honokiol on cognitive function in mice with epilepsy.@*METHODS@#Kainic acid (38 mg/kg) was intraperitoneally injected in 5 weeks old male ICR mice to induce epilepsy. Honokiol at dose of 3, 10, 30 mg/kg was given to epilepic mice by intraperitoneal injection for 10 days. Fluoro-Jade B staining was used to assess neuronal death; Morris water maze and Y maze tests were used to measure cognitive function such as learning and memory; Western blot was performed to detect the expression of acetylated superoxide dismutase (SOD), microtubule associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ) and P62 in hippocampus tissue; thiobarbituric acid and WST-1 methods were used to detect malondialdehyde (MDA) and SOD.@*RESULTS@#Compared with control group, the levels of acetylated-SOD, MDA, LC3-Ⅱ, P62 and neuronal death increased, cognitive function and SOD decreased in model group (<0.05 or <0.01). Honokiol at the dose of 10 mg/kg and 30 mg/kg decreased SOD acetylation, MDA content, expression of LC3-Ⅱ and P62, as well as neuronal death, and the cognitive function was improved (<0.05 or <0.01), especially in 30 mg/kg Honokiol group.@*CONCLUSIONS@#Honokiol alleviates oxidative stress and autophagy degradation disorder, decreases neuronal death, and therefore improves cognitive function in epilepsy mice.


Subject(s)
Animals , Male , Mice , Biphenyl Compounds , Pharmacology , Cognition , Epilepsy , Gene Expression Regulation , Hippocampus , Kainic Acid , Lignans , Pharmacology , Malondialdehyde , Maze Learning , Mice, Inbred ICR , Neurons , Superoxide Dismutase , Genetics
7.
Neuroscience Bulletin ; (6): 283-290, 2018.
Article in English | WPRIM | ID: wpr-777066

ABSTRACT

Accumulating data have revealed that abnormal activity of the mTOR (mammalian target of rapamycin) pathway plays an important role in epileptogenesis triggered by various factors. We previously reported that pretreatment with perifosine, an inhibitor of Akt (also called protein kinase B), abolishes the rapamycin-induced paradoxical increase of S6 phosphorylation in a rat model induced by kainic acid (KA). Since Akt is an upstream target in the mTOR signaling pathway, we set out to determine whether perifosine has a preventive effect on epileptogenesis. Here, we explored the effect of perifosine on the model of temporal epilepsy induced by KA in rats and found that pretreatment with perifosine had no effect on the severity or duration of the KA-induced status epilepticus. However, perifosine almost completely inhibited the activation of p-Akt and p-S6 both acutely and chronically following the KA-induced status epilepticus. Perifosine pretreatment suppressed the KA-induced neuronal death and mossy fiber sprouting. The frequency of spontaneous seizures was markedly decreased in rats pretreated with perifosine. Accordingly, rats pretreated with perifosine showed mild impairment in cognitive functions. Collectively, this study provides novel evidence in a KA seizure model that perifosine may be a potential drug for use in anti-epileptogenic therapy.


Subject(s)
Animals , Male , Rats , Anticonvulsants , Pharmacology , Brain , Pathology , Convulsants , Toxicity , Disease Models, Animal , Epilepsy, Temporal Lobe , Pathology , Kainic Acid , Toxicity , Neurons , Pathology , Phosphorylcholine , Pharmacology , Protein Kinase Inhibitors , Pharmacology , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Status Epilepticus , Pathology
8.
Yeungnam University Journal of Medicine ; : 192-198, 2018.
Article in English | WPRIM | ID: wpr-787113

ABSTRACT

BACKGROUND: Chronic inflammation can lower the seizure threshold and have influence on epileptogenesis. The components of red ginseng (RG) have anti-inflammatory effects. The abundance of peripherally derived immune cells in resected epileptic tissue suggests that the immune system is a potential target for anti-epileptogenic therapies. The present study used continuous electroencephalography (EEG) to evaluate the therapeutic efficacy of RG in intrahippocampal kainic acid (IHKA) animal model of temporal lobe epilepsy.METHODS: Prolonged status epilepticus (SE) was induced in 7-week-old C57BL/6J mice via stereotaxic injection of kainic acid (KA, 150 nL; 1 mg/mL) into the right CA3/dorsal hippocampus. The animals were implanted electrodes and monitored for spontaneous seizures. Following the IHKA injections, one group received treatments of RG (250 mg/kg/day) for 4 weeks (RG group, n=7) while another group received valproic acid (VPA, 30 mg/kg/day) (VPA group, n=7). Laboratory findings and pathological results were assessed at D29 and continuous (24 h/week) EEG monitoring was used to evaluate high-voltage sharp waves on D7, D14, D21, and D28.RESULTS: At D29, there were no differences between the groups in liver function test but RG group had higher blood urea nitrogen levels. Immunohistochemistry analyses revealed that RG reduced the infiltration of immune cells into the brain and EEG analyses showed that it had anticonvulsant effects.CONCLUSION: Repeated treatments with RG after IHKA-induced SE decreased immune cell infiltration into the brain and resulted in a marked decrease in electrographic seizures. RG had anticonvulsant effects that were similar to those of VPA without serious side effects.


Subject(s)
Animals , Mice , Blood Urea Nitrogen , Brain , Electrodes, Implanted , Electroencephalography , Epilepsy, Temporal Lobe , Hippocampus , Immune System , Immunohistochemistry , Inflammation , Kainic Acid , Liver Function Tests , Models, Animal , Panax , Seizures , Status Epilepticus , Temporal Lobe , Valproic Acid
9.
The Korean Journal of Physiology and Pharmacology ; : 63-70, 2018.
Article in English | WPRIM | ID: wpr-727937

ABSTRACT

Cilostazol is a selective inhibitor of type 3 phosphodiesterase (PDE3) and has been widely used as an antiplatelet agent. Cilostazol mediates this activity through effects on the cyclic adenosine monophosphate (cAMP) signaling cascade. Recently, it has attracted attention as a neuroprotective agent. However, little is known about cilostazol's effect on excitotoxicity induced neuronal cell death. Therefore, this study evaluated the neuroprotective effect of cilostazol treatment against hippocampal neuronal damage in a mouse model of kainic acid (KA)-induced neuronal loss. Cilostazol pretreatment reduced KA-induced seizure scores and hippocampal neuron death. In addition, cilostazol pretreatment increased cAMP response element-binding protein (CREB) phosphorylation and decreased neuroinflammation. These observations suggest that cilostazol may have beneficial therapeutic effects on seizure activity and other neurological diseases associated with excitotoxicity.


Subject(s)
Animals , Mice , Adenosine Monophosphate , Cell Death , Cyclic AMP Response Element-Binding Protein , Hippocampus , Kainic Acid , Neurons , Neuroprotective Agents , Phosphorylation , Seizures , Therapeutic Uses
10.
The Korean Journal of Physiology and Pharmacology ; : 301-309, 2018.
Article in English | WPRIM | ID: wpr-727588

ABSTRACT

Statins mediate vascular protection and reduce the prevalence of cardiovascular diseases. Recent work indicates that statins have anticonvulsive effects in the brain; however, little is known about the precise mechanism for its protective effect in kainic acid (KA)-induced seizures. Here, we investigated the protective effects of atorvastatin pretreatment on KA-induced neuroinflammation and hippocampal cell death. Mice were treated via intragastric administration of atorvastatin for 7 days, injected with KA, and then sacrificed after 24 h. We observed that atorvastatin pretreatment reduced KA-induced seizure activity, hippocampal cell death, and neuroinflammation. Atorvastatin pretreatment also inhibited KA-induced lipocalin-2 expression in the hippocampus and attenuated KA-induced hippocampal cyclooxygenase-2 expression and glial activation. Moreover, AKT phosphorylation in KA-treated hippocampus was inhibited by atorvastatin pretreatment. These findings suggest that atorvastatin pretreatment may protect hippocampal neurons during seizures by controlling lipocalin-2-associated neuroinflammation.


Subject(s)
Animals , Mice , Atorvastatin , Brain , Cardiovascular Diseases , Cell Death , Cyclooxygenase 2 , Hippocampus , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Kainic Acid , Neurons , Phosphorylation , Prevalence , Seizures
11.
Experimental Neurobiology ; : 226-237, 2018.
Article in English | WPRIM | ID: wpr-714905

ABSTRACT

An abnormal reorganization of the dentate gyrus and neurotoxic events are important phenotypes in the hippocampus of patients with temporal lobe epilepsy (TLE). The effects of morin, a bioflavonoid constituent of many herbs and fruits, on epileptic seizures have not yet been elucidated, though its beneficial effects, such as its anti-inflammatory and neuroprotective properties, are well-described in various neurodegenerative diseases. In the present study, we investigated whether treatment with morin hydrate (MH) can reduce the susceptibility to seizures, granule cell dispersion (GCD), mammalian target of rapamycin complex 1 (mTORC1) activity, and the increases in the levels of apoptotic molecules and inflammatory cytokines in the kainic acid (KA)-induced seizure mouse model. Our results showed that oral administration of MH could reduce susceptibility to seizures and lead to the inhibition of GCD and mTORC1 activity in the KA-treated hippocampus. Moreover, treatment with MH significantly reduced the increased levels of apoptotic signaling molecules and pro-inflammatory mediators in the KA-treated hippocampus compared with control mice, suggesting a neuroprotective role. Therefore, these results suggest that morin has a therapeutic potential against epilepsy through its abilities to inhibit GCD and neurotoxic events in the in vivo hippocampus.


Subject(s)
Animals , Humans , Mice , Administration, Oral , Cytokines , Dentate Gyrus , Epilepsy , Epilepsy, Temporal Lobe , Fruit , Hippocampus , Kainic Acid , Neurodegenerative Diseases , Neuroprotection , Phenotype , Seizures , Sirolimus
12.
Experimental Neurobiology ; : 25-32, 2017.
Article in English | WPRIM | ID: wpr-30379

ABSTRACT

Akt (also known as protein kinase B, PKB) has been seen to play a role in astrocyte activation of neuroprotection; however, the underlying mechanism on deregulation of Akt signaling in brain injuries is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following kainic acid (KA)-induced neurodegeneration of mouse hippocampus. In control mice, there was a weak signal for CTMP in the hippocampus, but CTMP was markedly increased in the astrocytes 3 days after KA treatment. To further investigate the effectiveness of Akt signaling, the phosphorylation of CTMP was examined. KA treatment induced an increased p-CTMP expression in the astrocytes of hippocampus at 1 day. LPS/IFN-γ-treatment on primary astrocytes promoted the p-CTMP was followed by phosphorylation of Akt and finally upregulation of CTMP and p-CREB. Time-dependent expression of p-CTMP, p-Akt, p-CREB, and CTMP indicate that LPS/IFN-γ-induced phosphorylation of CTMP can activate Akt/CREB signaling, whereas lately emerging enhancement of CTMP can inhibit it. These results suggest that elevation of CTMP in the astrocytes may suppress Akt activity and ultimately negatively affect the outcome of astrocyte activation (astroglisiois). Early time point enhancers of phosphorylation of CTMP and/or late time inhibitors specifically targeting CTMP may be beneficial in astrocyte activation for neuroprotection within treatment in neuroinflammatory conditions.


Subject(s)
Animals , Mice , Astrocytes , Brain Injuries , Hippocampus , Kainic Acid , Neuroprotection , Phosphorylation , Proto-Oncogene Proteins c-akt , Up-Regulation
13.
Experimental Neurobiology ; : 266-277, 2017.
Article in English | WPRIM | ID: wpr-18846

ABSTRACT

Silibinin, an active constituent of silymarin extracted from milk thistle, has been previously reported to confer protection to the adult brain against neurodegeneration. However, its effects against epileptic seizures have not been examined yet. In order to investigate the effects of silibinin against epileptic seizures, we used a relevant mouse model in which seizures are manifested as status epilepticus, induced by kainic acid (KA) treatment. Silibinin was injected intraperitoneally, starting 1 day before an intrahippocampal KA injection and continued daily until analysis of each experiment. Our results indicated that silibinin-treatment could reduce seizure susceptibility and frequency of spontaneous recurrent seizures (SRS) induced by KA administration, and attenuate granule cell dispersion (GCD), a morphological alteration characteristic of the dentate gyrus (DG) in temporal lobe epilepsy (TLE). Moreover, its treatment significantly reduced the aberrant levels of apoptotic, autophagic and pro-inflammatory molecules induced by KA administration, resulting in neuroprotection in the hippocampus. Thus, these results suggest that silibinin may be a beneficial natural compound for preventing epileptic events.


Subject(s)
Adult , Animals , Humans , Mice , Brain , Dentate Gyrus , Epilepsy , Epilepsy, Temporal Lobe , Hippocampus , Kainic Acid , Milk Thistle , Neuroprotection , Seizures , Silymarin , Status Epilepticus
14.
Chinese Medical Journal ; (24): 960-966, 2016.
Article in English | WPRIM | ID: wpr-290143

ABSTRACT

<p><b>BACKGROUND</b>The antiepileptic effect of the anterior thalamic nuclei (ANT) stimulation has been demonstrated; however, its underlying mechanism remains unclear. The aim of this study was to investigate the effect of chronic ANT stimulation on hippocampal neuron loss and apoptosis.</p><p><b>METHODS</b>Sixty-four rats were divided into four groups: The control group, the kainic acid (KA) group, the sham-deep brain stimulation (DBS) group, and the DBS group. KA was used to induce epilepsy. Seizure count and latency to the first spontaneous seizures were calculated. Nissl staining was used to analyze hippocampal neuronal loss. Polymerase chain reaction and Western blotting were conducted to assess the expression of caspase-3 (Casp3), B-cell lymphoma-2 (Bcl2), and Bcl2-associated X protein (Bax) in the hippocampal CA3 region. One-way analysis of variance was used to determine the differences between the four groups.</p><p><b>RESULTS</b>The latency to the first spontaneous seizures in the DBS group was significantly longer than that in the KA group (27.50 ± 8.05 vs. 16.38 ± 7.25 days, P = 0.0005). The total seizure number in the DBS group was also significantly reduced (DBS vs. KA group: 11.75 ± 6.80 vs. 23.25 ± 7.72, P = 0.0002). Chronic ANT-DBS reduced neuronal loss in the hippocampal CA3 region (DBS vs. KA group: 23.58 ± 6.34 vs. 13.13 ± 4.00, P = 0.0012). After chronic DBS, the relative mRNA expression level of Casp3 was decreased (DBS vs. KA group: 1.18 ± 0.37 vs. 2.09 ± 0.46, P = 0.0003), and the relative mRNA expression level of Bcl2 was increased (DBS vs. KA group: 0.92 ± 0.21 vs. 0.48 ± 0.16, P = 0.0004). The protein expression levels of CASP3 (DBS vs. KA group: 1.25 ± 0.26 vs. 2.49 ± 0.38, P < 0.0001) and BAX (DBS vs. KA group: 1.57 ± 0.49 vs. 2.80 ± 0.63, P = 0.0012) both declined in the DBS group whereas the protein expression level of BCL2 (DBS vs. KA group: 0.78 ± 0.32 vs. 0.36 ± 0.17, P = 0.0086) increased in the DBS group.</p><p><b>CONCLUSIONS</b>This study demonstrated that chronic ANT stimulation could exert a neuroprotective effect on hippocampal neurons. This neuroprotective effect is likely to be mediated by the inhibition of apoptosis in the epileptic hippocampus.</p>


Subject(s)
Animals , Male , Rats , Anterior Thalamic Nuclei , Physiology , Apoptosis , Deep Brain Stimulation , Epilepsy , Pathology , Therapeutics , Hippocampus , Pathology , Kainic Acid , Pharmacology , Rats, Sprague-Dawley , Seizures
15.
Acta Academiae Medicinae Sinicae ; (6): 265-270, 2016.
Article in English | WPRIM | ID: wpr-289872

ABSTRACT

Objective To explore the temporal and spatial distribution of CCAAT/enhancer-binding protein homologous protein (CHOP) and calnexin (CNX) in the dentate gyrus of mesial temporal lobe epilepsy (mTLE) mouse model. Methods We used kainic acid (KA) to induce acute phase (12 h and 24 h) mTLE mouse models and performed Western blotting and immunofluorescence to detect the different expressions and distribution pattern of CHOP and CNX in CA3 of the hippocampus. Results Compared with the controls,the expressions of CHOP(F=1.136,P=0.4069) and CNX (F=2.378,P=0.2087) did not increase in CA3 of hippocampus 12 h following KA injection in the acute phase of mTLE mouse models,whereas the expressions in CA1 and CA3 of hippocampus 24 h after injection were significantly higher (F=8.510,P=0.0362;F=6.968,P=0.0497,respectively). As shown by immunofluorescence analysis,CHOP was expressed mainly in CA3 of hippocampus 12 h after KA injection,and increased in CA1 and CA3 24 h after KA administration. Compared with the controls,the expressions of CHOP(F=24.480,P=0.0057) and CNX (F=7.149,P=0.0478) were significantly higher 24 h after KA injection.Conclusions The expression of CHOP increases along with the progression of seizures,indicating the increased level of endoplasmic reticulum stress. An increasing number of CNX,which serves as molecular chaperone,may be needed to facilitate the unfolded protein to complete the folding process.


Subject(s)
Animals , Mice , Calnexin , Metabolism , Dentate Gyrus , Metabolism , Disease Models, Animal , Epilepsy, Temporal Lobe , Metabolism , Kainic Acid , Seizures , Metabolism , Transcription Factor CHOP , Metabolism
16.
Annals of Rehabilitation Medicine ; : 757-768, 2016.
Article in English | WPRIM | ID: wpr-196576

ABSTRACT

OBJECTIVE: To develop an in vitro model analogous to the environment of traumatic spinal cord injury (SCI), the authors evaluated change of astrogliosis following treatments with kainate and/or scratch, and degree of neurite outgrowth after treatment with a kainate inhibitor. METHODS: Astrocytes were obtained from the rat spinal cord. Then, 99% of the cells were confirmed to be GFAP-positive astrocytes. For chemical injury, the cells were treated with kainate at different concentrations (10, 50 or 100 µM). For mechanical injury, two kinds of uniform scratches were made using a plastic pipette tip by removing strips of cells. For combined injury (S/K), scratch and kainate were provided. Cord neurons from rat embryos were plated onto culture plates immediately after the three kinds of injuries and some cultures were treated with a kainate inhibitor. RESULTS: Astro-gliosis (glial fibrillary acidic protein [GFAP], vimentin, chondroitin sulfate proteoglycan [CSPG], rho-associated protein kinase [ROCK], and ephrin type-A receptor 4 [EphA4]) was most prominent after treatment with 50 µM kainate and extensive scratch injury in terms of single arm (p<0.001) and in the S/K-induced injury model in view of single or combination (p<0.001). Neurite outgrowth in the seeded spinal cord (β-III tubulin) was the least in the S/K-induced injury model (p<0.001) and this inhibition was reversed by the kainate inhibitor (p<0.001). CONCLUSION: The current in vitro model combining scratch and kainate induced glial scarring and inhibitory molecules and restricted neurite outgrowth very strongly than either the mechanically or chemically-induced injury model; hence, it may be a useful tool for research on SCI.


Subject(s)
Animals , Rats , Arm , Astrocytes , Chondroitin Sulfate Proteoglycans , Cicatrix , Embryonic Structures , In Vitro Techniques , Kainic Acid , Neurites , Neuroglia , Neurons , Plastics , Protein Kinases , Spinal Cord Injuries , Spinal Cord , Vimentin
17.
Korean Journal of Physical Anthropology ; : 71-79, 2016.
Article in English | WPRIM | ID: wpr-107701

ABSTRACT

Kainic acid (KA)-induced neuronal cell death is associated with intracellular Ca²⁺ influx. However, it is unknown whether Lyn/Btk pathway is involved in the Ca²⁺-mediated neurotoxicity and neuronal death induced by KA. In the present study, we investigated the altered expression of Ca²⁺-controlled proteins in KA-treated hippocampus. Mice were sacrificed at 24 h after KA (20 mg/kg) systemic injection. We conducted Electroencephalographic (EEG) recording and examined hippocampal alterations by Western blotting and immunostaining in control mice or KA-treated mice. EEG tests showed that KA-treated mice increased seizure frequency and severity compared with control mice during KA-induced seizures. We found that KA decreases hippocalcin and calpain-mediated proteolysis in the hippocampus. In particular, the phosphorylation of Lyn and Btk was increased in KA-treated hippocampus compared to those of control mice. Our findings identify tyrosine kinases such as Lyn/Btk as a critical regulator of Ca²⁺-mediated neurotoxicity in KA-induced seizures.


Subject(s)
Animals , Mice , Blotting, Western , Calcium , Cell Death , Electroencephalography , Hippocalcin , Hippocampus , Kainic Acid , Neurons , Phosphorylation , Phosphotransferases , Proteolysis , Seizures , Tyrosine
18.
Rev. bras. epidemiol ; 18(1): 262-277, Jan-Mar/2015. tab
Article in Portuguese | LILACS | ID: lil-736428

ABSTRACT

INTRODUÇÃO: O absenteísmo-doença, enquanto falta ao trabalho justificada por licença médica, é um importante indicador das condições de saúde dos trabalhadores. Em geral, características sociodemográficas e ocupacionais situam-se entre os principais fatores associados ao absenteísmo-doença. A administração pública é responsável por 21,8% dos empregos formais no Brasil. Esta população permite o estudo de uma grande variedade de categorias profissionais. OBJETIVO: Analisar o perfil e os indicadores de absenteísmo-doença entre servidores municipais de Goiânia, no Estado de Goiás, Brasil. Métodos: Estudo transversal das licenças certificadas para tratamento de saúde superiores a três dias, de todos os servidores, desde janeiro de 2005 a dezembro de 2010. Foram calculadas as prevalências, utilizando como critérios o número de indivíduos, os episódios e os dias de afastamento. RESULTADOS: Foram concedidas 40.578 licenças certificadas para tratamento de saúde a 13.408 servidores numa população média anual de 17.270 pessoas, o que resultou em 944.722 dias de absenteísmo. A prevalência acumulada de licença no período foi de 143,7%, com média anual de 39,2% e duração de 23 dias por episódio. A prevalência acumulada de absenteísmo-doença foi maior entre mulheres (52,0%) com idade superior a 40 anos (55,9%), com companheiro (49,9%), de baixa escolaridade (54,4%), profissionais de educação (54,7%), > 10 anos de serviço (61,9%) e múltiplos vínculos profissionais (53,7%). Os grupos de diagnósticos (CID-10) com as maiores prevalências acumuladas de licenças foram os do capítulo de transtornos mentais (26,5%), doenças osteomusculares (25,1%) e lesões (23,6%). CONCLUSÕES: Os indicadores de absenteísmo-doença expressam a magnitude desse fenômeno no serviço público e podem auxiliar no planejamento das ações de saúde do trabalhador, priorizando os grupos ocupacionais mais vulneráveis. .


BACKGROUND: Sickness absence, as work absenteeism justified by medical certificate, is an important health status indicator of the employees and, overall, sociodemographic and occupational characteristics are among the main factors associated with sickness absence. Public administration accounts for 21.8% of the formal job positions in Brazil. This population allows the study of a wide range of professional categories. OBJECTIVE: To assess the profile and indicators of sickness absence among public workers from the municipality of Goiania, in the State of Goiás, Brazil. METHODS: A cross-sectional study on certified sick leaves, lasting longer than three days, of all civil servants from January 2005 to December 2010. Prevalence rates were calculated using as main criteria the number of individuals, episodes and sick days. RESULTS: 40,578 certified sick leaves were granted for health treatment among 13,408 public workers, in an annual average population of 17,270 people, which resulted in 944,722 days of absenteeism. The cumulative prevalence of sick leave for the period was of 143.7%, with annual average of 39.2% and duration of 23 days per episode. The cumulative prevalence of sickness absence was higher among women (52.0%), older than 40 years old (55.9%), with a partner (49.9%), low schooling (54.4%), education professionals (54.7%), > 10 years of service (61.9%), and with multiple work contracts (53.7%). Diagnoses groups (ICD-10) with higher cumulative prevalence of sick leaves were those with mental disorders (26.5%), musculoskeletal diseases (25.1%), and injuries (23.6%). CONCLUSIONS: Indicators of sickness absence express the magnitude of this phenomenon in the public sector and can assist in planning health actions for the worker, prioritizing the most vulnerable occupational groups. .


Subject(s)
Animals , Male , Rats , Complement Factor H , Cytokines/immunology , Neuroglia/immunology , Seizures/immunology , Age Factors , Amino Acid Transport System X-AG/immunology , Amino Acid Transport System X-AG/physiology , Astrocytes/drug effects , Astrocytes/immunology , Astrocytes/physiology , Blotting, Western , Clusterin/immunology , Cytokines/drug effects , Cytokines/physiology , Disease Models, Animal , Disease Susceptibility/immunology , Fluorescent Antibody Technique , Hippocampus/immunology , Hippocampus/physiology , Immunohistochemistry , Inflammation/immunology , Kainic Acid , Microglia/drug effects , Microglia/immunology , Microglia/physiology , Neuroglia/drug effects , Random Allocation , Rats, Sprague-Dawley , Severity of Illness Index , Seizures/chemically induced , Seizures/physiopathology , Up-Regulation/drug effects , Up-Regulation/immunology , Up-Regulation/physiology
19.
Journal of Zhejiang University. Medical sciences ; (6): 37-42, 2015.
Article in Chinese | WPRIM | ID: wpr-255237

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of licorice flavonoid (LF) on kainic acid (KA)-induced seizure in mice and its mechanism.</p><p><b>METHODS</b>Male adult ICR mice were injected with 25 mg/kg KA to induce temporal lobe seizure. LF was administrated 7 d before seizure induction (pre-treatment) or 24 h after seizure induction (post-treatment) for 7 d. Acute seizure latency, seizure stage and duration were observed and compared between LF- and vehicle-treated mice. From d2 on, mice with status epilepticus were video-monitored for spontaneous seizures, 10 h/d for 6 w. Immunohistochemical analysis of BrdU and Timm staining was conducted to detect the neurogenesis and mossy fiber sprouting, respectively.</p><p><b>RESULTS</b>No significant difference was observed in acute seizure latency, seizure stage and duration between LF-and vehicle-treated mice. KA-induced acute seizure resulted in spontaneous seizure in mice, and the seizure frequency was increased with time. Pre- and post-treatment with LF decreased seizure frequency from w3 after modeling [(0.58±0.15)/d, (0.38±0.38)/d vs (1.23±0.23)/d, P <0.05]. Furthermore, KA-induced seizure resulted in robust neurogenesis and mossy fiber sprouting, while treatment with LF both pre- and post- KA injection significantly inhibited neurogenesis (15.6±2.6, 17.1±3.1 vs 28.9±3.5, P <0.05) and mossy fiber sprouting (1.33±0.31, 1.56±0.42 vs 3.0±0.37, P <0.05).</p><p><b>CONCLUSION</b>LF has no significant anti-seizure effect. However, it can decrease epileptogenesis through inhibition of neurogenesis and mossy fiber sprouting.</p>


Subject(s)
Animals , Male , Mice , Disease Models, Animal , Flavonoids , Pharmacology , Glycyrrhiza , Chemistry , Kainic Acid , Mice, Inbred ICR , Mossy Fibers, Hippocampal , Neurogenesis , Seizures , Drug Therapy , Status Epilepticus , Drug Therapy
20.
Journal of Southern Medical University ; (12): 191-195, 2015.
Article in Chinese | WPRIM | ID: wpr-239214

ABSTRACT

<p><b>OBJECTIVE</b>To explore the effect of up-regulation of KA1 subunit of the kainate receptor on endoplasmic reticulum stress (ERS)-induced excitotoxic neurodegeneration in mouse hippocampus.</p><p><b>METHODS</b>Seventy adult male KM mice were subjected to microinjections into the hippocampus of kainic acid (KA) or 500, 1000, or 2000 µg/ml tunicamycin (TM). At 1, 2, 3, 4, 5, 8, and 12 h after the injections, the mice were assessed for Bederson scores and sacrificed for FJB staining and immunofluorescence observation of the brain slices.</p><p><b>RESULTS</b>At 3, 4, 5, and 8 h after KA injection and at 4 and 5 h after of 2000 µg/ml TM injection, the mice showed severe central nervous system dysfunction, and FJB staining revealed increased cell death in the hippocampus, where up-regulated expressions of KA1 receptor and ERS marker P-eIF2α were found by immunofluorescence staining (P<0.05).</p><p><b>CONCLUSION</b>Microinjection of KA or TM into the hippocampus causes neuronal death and ERS with up-regulated expression of KA1. In this process of neuronal apoptosis, the membrane receptor KA1 receives the apoptosis signal and transfers it to the inside of the cells to cause cell endoplasmic reticulum dysfunction and ERS response, which ultimately leads to neuronal death.</p>


Subject(s)
Animals , Male , Mice , Apoptosis , Endoplasmic Reticulum Stress , Hippocampus , Pathology , Kainic Acid , Pharmacology , Neurons , Pathology , Receptors, Kainic Acid , Metabolism , Tunicamycin , Pharmacology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL